

oparse: Structured Compression of Large Language Models based on Low-Rank and Sparse Approximation

G Yixiao Li*, G Yifan Yu*, G Qingru Zhang, G Chen Liang, 🗉 Pengcheng He, 🗲 Weizhu Chen, G Tuo Zhao

200

Algorithm **SVD** Initialization. Given a pre-trained weight W_0 , obtain the initial low-rank part U_0 and V_0 by truncated SVD of W_0 :

Iterative Pruning. We update U_t and V_t by SGD-type optimization at each iteration. A column s_t in a structured sparse matrix S_t at the next iteration is

and

The remaining ratio p_t is gradually decreased to the target sparsity as iteration goes on.

Why Low-rank Matrices? (Cont'd)

Importance Score Shift. Successfully shift the importance score distribution to the ideal one, helping achieve the high sparsity level without hurting performance drastically.

Figure 3: Histogram of neuron importance score. W_q (left) and W_k (right) of Layer 3 in DeBERTaV3-base.

$$U_0 = \left[\sqrt{\sigma_1}u_1; \sqrt{\sigma_2}u_2; \dots; \sqrt{\sigma_r}u_r\right]$$
$$V_0 = \left[\sqrt{\sigma_1}v_1; \sqrt{\sigma_2}v_2; \dots; \sqrt{\sigma_r}v_r\right].$$

Obtain the initial structured sparse matrix S_0 by

 $S_0 = W_0 - U_0 V_0^{\top}.$

$$s_{t+1} = \mathcal{T}(\widetilde{s_t}, I(s_t)),$$

where $\widetilde{s_t} = s_t - \alpha \nabla_{s_t} \mathcal{L}$ comes from the SGD-type optimation

$$\mathcal{T}(\widetilde{s_t}, I(s_t))_{*i} = \begin{cases} \widetilde{s_t} & \text{if } I(\widetilde{s_t}) \text{ in top } p_t \%, \\ 0 & \text{o.w.} \end{cases}$$

Main Results

Compressing BART-large on NLG tasks, summarization task XSum for example.

Ratio	Method	XSum		
- 100%	Lead-3 BART _{large}	16.30/1.60/11.95 45.14/22.27/37.25		
50%	ITP LoSparse	38.42/16.32/31.43 39.18/16.91/31.62		
40%	ITP LoSparse	36.71/14.96/29.86 38.30/16.02/30.72		
30%	ITP LoSparse	34.42/13.15/27.99 37.41/15.42/30.02		

Main Results (Cont'd)

References

[1] Molchanov, P., Mallya, A., Tyree, S., Frosio, I., and Kautz, J. Importance estimation for neural network pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11264–11272, 2019. [2] Candès, Emmanuel J., et al. "Robust principal component analysis?." Journal of the ACM (JACM) 58.3 (2011): 1-37. [3] Yu, Xiyu, et al. "On compressing deep models by low rank and sparse decomposition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

Ratio	10%		
/lethod	Movement	ITP	LoSparse
MNLI	N.A.	79.7	81.7
RTE	N.A.	N.A.	66.0
QNLI	N.A.	82.3	86.1
MRPC	77.0	78.5	82.3
QQP	N.A.	88.3	89.5
SST-2	88.0	88.3	89.2
CoLA	N.A.	38.0	40.0
STS-B	N.A.	86.3	87.2