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Background
• Large language models: powerful and successful in NLU
and NLG, but consume huge memory and difficult to de-
ploy on edge devices.
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• Size: T5 up to 11B; GPT-3 up to 175B.
• Goal: Reduce the size while maintain its power.
• Previous approach: Pruning.

Unstructured pruning Structured pruning

Question: Is pruning the optimal solution for reducing
model sizes?

Pruning
Unstructured Iterative Pruning
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Iteratively prune during fine-tuning

• Importance Score: Given a weight wij and its gradient
from the loss L, the importance score of wij is its sensitivity
[1], defined as

I (wij) =
∣∣wij · ∇wij

L
∣∣.

• Iterative Pruning: Pruning happens at the same time as
fine-tuning.

Challenges
• Difficulty in Storing Unstructured Matrices. Storing un-
structured matrices requires high sparsity (e.g., 99%), which
often hurts the performance.

Pruning (Cont’d)
• Unwanted Importance Distribution. Ideally, a few
weights have high importance scores so that the rest can be
pruned. In practice, however, many weights are important.
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Figure 1: Histogram of neuron importance scores

Our Method
High-level idea: A dense weight matrix W is approximated
by a low-rank matrix and a structured sparse matrix:

W = UV ⊤ + S.
• U, V ∈ Rd×r, r ≪ d. A typical d is 768 and 1024; a typical
r is 8, 16, and 32.
• Columns in S ∈ Rd×d are zeroed out. A typical remaining
ratio ranges from 10% to 50%.
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Why Low-rank Matrices?
Decoupling coherent and incoherent parts of neurons.
• Coherent parts: common knowledge, brewed by low-rank
approximation. [2]
• Incoherent parts: neuron-specific information, learned by
sparse approximation.
Large Singular Values. A few large singular values in lan-
guage models, indicating the approximation error is small with
low-rank approximation.
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Figure 2: Singular value spectrum. Left: Layer 10 of BART-
large; Right: Layer 14 of DeBERTaV3-large.

Why Low-rank Matrices? (Cont’d)
Importance Score Shift. Successfully shift the importance
score distribution to the ideal one, helping achieve the high
sparsity level without hurting performance drastically.
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Figure 3: Histogram of neuron importance score. Wq (left)
and Wk (right) of Layer 3 in DeBERTaV3-base.

Algorithm
SVD Initialization. Given a pre-trained weight W0, obtain
the initial low-rank part U0 and V0 by truncated SVD of W0:

U0 = [
√
σ1u1;

√
σ2u2; ...;

√
σrur],

V0 = [
√
σ1v1;

√
σ2v2; ...;

√
σrvr].

Obtain the initial structured sparse matrix S0 by

S0 = W0 − U0V
⊤
0 .

Iterative Pruning. We update Ut and Vt by SGD-type opti-
mization at each iteration. A column st in a structured sparse
matrix St at the next iteration is

st+1 = T (s̃t, I(st)),

where s̃t = st−α∇stL comes from the SGD-type optimation
and

T (s̃t, I(st))∗i =

{
s̃t if I(s̃t) in top pt%,
0 o.w.

The remaining ratio pt is gradually decreased to the target
sparsity as iteration goes on.

Main Results
Compressing BART-large on NLG tasks, summarization task
XSum for example.

Ratio Method XSum

- Lead-3 16.30/1.60/11.95
100% BARTlarge 45.14/22.27/37.25

50% ITP 38.42/16.32/31.43
LoSparse 39.18/16.91/31.62

40% ITP 36.71/14.96/29.86
LoSparse 38.30/16.02/30.72

30% ITP 34.42/13.15/27.99
LoSparse 37.41/15.42/30.02

Main Results (Cont’d)
Compressing DeBERTaV3-base on NLU tasks, GLUE dataset
for instance.

Ratio 10%

Method Movement ITP LoSparse

MNLI N.A. 79.7 81.7
RTE N.A. N.A. 66.0
QNLI N.A. 82.3 86.1
MRPC 77.0 78.5 82.3
QQP N.A. 88.3 89.5
SST-2 88.0 88.3 89.2
CoLA N.A. 38.0 40.0
STS-B N.A. 86.3 87.2

N.A. means the method doesn’t converge.

How about CNN?
No More Fast Decay. Due to small kernel sizes and channel
numbers, convolution weights (reorganized) don’t have fast
singular value decay.
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Figure 4: Singular value spectrum. Two convolution weights
of ResNet-50, pre-trained on ImageNet-1k.
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