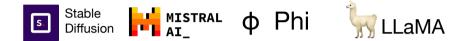
LoftQ: LoRA-Fine-Tuning-Aware Quantization for Large Language Models


Yixiao Li^{1*}, Yifan Yu^{1*}, Chen Liang^{*}, Pengcheng He^{\circ}, Nikos Karampatziakis^{\circ}, Weizhu Chen^{\circ}, Tuo Zhao^{*}

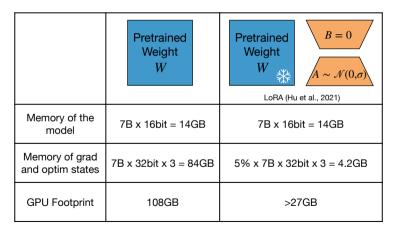
*Georgia Institute of Technology, [◊]Microsoft Azure AI, ¹Equal contribution

Presenter: Xiaodong Liu

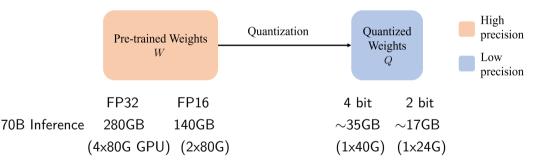
May 08, 2024

Finetune Generative AI on Your PC

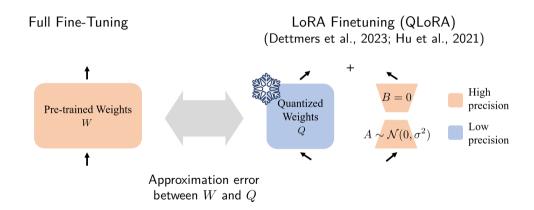
Focus on specific domain.


Protect your personal and private data.

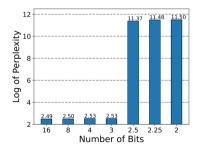
Transfer to your own writing or painting style.


. . . .

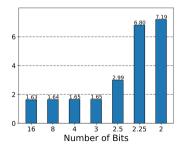
Challenges of Full Model Finetuning


Impossible to finetune a 7B model on one RTX 4080 (16BG).

Quantization: Low-Precision Storage



Discrepancy betw. Pre-trained Weights and LoRA Initialization



Discrepancy betw. Pre-trained Weights and LoRA Initialization

Evaluation perplexity (the lower the better) of applying LoRA to a quantized LLaMA-2-13b under different bit-levels on WikiText-2 dataset.

At LoRA Initialization

After LoRA Finetuning

LoftQ: <u>Lo</u>RA-<u>Fine-T</u>uning-Aware <u>Q</u>uantization

Find quantized weights and low-rank weights such that the low-rank weights can bridge the discrepancy between the quantized weights and the pre-trained weights:

$$\min_{Q,A,B} \|W - Q - AB^\top\|_{\mathrm{F}}^2,$$

where W: pre-trained weights; Q: quantized weights; A, B: low-rank approximation; $\|\cdot\|_{\mathrm{F}}$: Frobenius norm.

Algorithm: Alternating Optimization

Input: T: # of iterations; $q(\cdot)$: quantization function. $A_0 \leftarrow 0, B_0 \leftarrow 0.$ for t = 1 to T do Quantization: $Q_t \leftarrow q(W - A_{t-1}B_{t-1}^{\top}).$ Low-rank approximation: $A_t, B_t \leftarrow \text{Truncated-SVD}(W - Q_t).$ end for Output: $Q_T, A_T, B_T.$

- Use Q_T, A_T, B_T as the initialization for LoRA fine-tuning.
- No limit of quantization methods.
- Alternating optimization reinforces Q and A, B.
- Without calibration data.
- Apply it to different weights in parallel.

Encoder-Only: DeBERTaV3-base on NLU

Method	Quantization	LoRA Rank	MNLI m / mm	QNLI Acc	RTE Acc	SST-2 Acc	SQuAD v2 F1	ANLI Acc
Fine-Tune	-	-	90.5/90.6	94.0	82.0	95.3	92.8	59.8
LoRA	-	16	90.4/90.5	94.6	85.1	95.1	93.1	60.2
QLoRA LoftQ (our)	2-bit NormalFloat	16	75.4/75.6 84.7/85.1	82.4 86.6	55.9 61.4	86.5 90.2	71.2 88.6	N/A 47.1
QLoRA LoftQ (our)	2-bit Uniform	16	76.5/76.3 87.3/87.1	83.8 90.6	56.7 61.1	86.6 94.0	77.6 91.2	-

"N/A": model does not converge.

Encoder-Decoder: BART-large on Summarization

Method	Quantization	LoRA Rank	XSum ROUGE-1/2/L	CNN/DailyMail ROUGE-1/2/L	
Lead 3 Fine-Tune	-	-	16.30/1.60/11.95 45.14/22.27/37.25	40.42/17.62/36.67 44.16/21.28/40.90	
LoRA	-	16	43.95/20.72/35.68	45.03/21.84/42.15	
QLoRA LoftQ (our)	4-bit NormalFloat	16	43.29/20.05/35.15 44.51/21.14/36.18	43.42/20.62/40.44 43.96/21.06/40.96	
QLoRA LoftQ (our)	4-bit Uniform	16	42.45/19.36/34.38 44.29/20.90/36.00	43.00/20.19/40.02 43.87/20.99/40.92	

Decoder-Only: LLaMA-2 on NLG

			LLaMA-2-7b		LLaMA-2-13b	
Method	Quantization	LoRA Rank	WikiText-2 PPL↓	GSM8K Acc↑	WikiText-2 PPL↓	GSM8K Acc↑
LoRA	-	64	5.08	34.4	5.12	45.3
QLoRA LoftQ (our)	4-bit NormalFloat	64	5.70 5.24	35.1 35.0	5.22 5.16	39.9 45.0
QLoRA LoftQ (our)	3-bit NormalFloat	64	5.73 5.63	32.1 32.9	5.22 5.13	40.7 44.4
QLoRA LoftQ (our)	2-bit NormalFloat	64	N/A 7.85	N/A 20.9	N/A 7.69	N/A 25.4
J/A: model does not converge. Regularization applied. 3 bit is mixed precision.						

Phi-2 and LLAMA-3 on GSM8K

Model	Bits	Rank	Method	GSM8K
Phi-2 (2.7B)	16	-	Full FT	66.8 ± 1.2
Phi-2 (2.7B)	16	64	LoRA	64.8 ± 0.5
Phi-2 (2.7B)	4	64	QLoRA	60.2 ± 0.6
Phi-2 (2.7B)	4	64	LoftQ	$ $ 64.1 \pm 0.7
LLAMA-3-8B	16	-	Full FT	70.4 ± 0.7
LLAMA-3-8B	16	64	LoRA	69.3 ± 1.5
LLAMA-3-8B	4	64	QLoRA	67.4 ± 1.0
LLAMA-3-8B	4	64	LoftQ	$ \textbf{ 68.0 \pm 0.6} \\$

Memory Footprint

Model	Parameters	GPU Memory		
Phi-2	\sim 3B	<11GB (e.g., RTX 2080 Ti, RTX 3080)		
Mistral-7B	\sim 7B	<16GB (e.g., RTX 4080)		
LoRA fine-tuning on GSM8K, input length $=$ 1024, batch size $=$ 1				

LORA fine-tuning on GSIVI8K, input length =1024. Datch size

Use LoftQ's Weight Init with Simple Code Changes

```
backbone model = AutoModelForCausalLM.from pretrained(
    args.model name or path, # e.g., "LoftO/Llama-2-7b-hf-4bit-64rank" on HF
    quantization config=BitsAndBytesConfig(
                                                          Initialize the quantized
        load in 4bit=True.
                                                          backbone using LoftQ
        bnb 4bit quant type="nf4",
    ),[
model = PeftModel.from pretrained(
  backbone model,
  args.model name or path.
                                 Initialize LoRA adaptors using LoftQ
  subfolder="loftq_init", # subfolder storing weights for A, B
  is trainable=True)
. . .
```

```
model.train()
```

. . .

Off-the-Shelf Models

- Llama-2 (7B, 13B, 70B), CodeLlama(7B, 13B, 70B)
- Phi-2
- Mistral-7B
- Llama-3 (8B, 70B), Llama-3-Instruct (8B, 70B)
- Phi-3 (mini, ...)

Future Directions

Recap the objective:

$$\min_{Q,A,B} \|W - Q - AB^\top\|_{\mathrm{F}}^2.$$

- Can we do better than alternating optimization? For example, differential quantization.
- Can we do better with calibration data? For example,

$$\min_{Q,A,B} \|X(W - Q - AB^{\top})\|_{\rm F}^2.$$

 Can we do better with adaptive low-rank approximation? For example, AdaLoRA (Zhang et al., 2022).

Take Home Messages

- Naive quantization hurts LoRA performance.
- LoftQ mutually reinforces the quantized backbone Q and init LoRA adapter A, B.
- LoftQ is an easy replacement of QLoRA.
- We have more off-the-shelf quantized models on huggingface/LoftQ.

Thank you!

Scan me to read more

We are releasing more off-the-shelf models on HuggingFace.